Step |
Hyp |
Ref |
Expression |
1 |
|
relopabv |
⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } |
2 |
1
|
a1i |
⊢ ( 𝐶 ∈ Cat → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } ) |
3 |
|
fveq2 |
⊢ ( 𝑓 = 〈 𝑥 , 𝑦 〉 → ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) = ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
4 |
3
|
neeq1d |
⊢ ( 𝑓 = 〈 𝑥 , 𝑦 〉 → ( ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ ↔ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) ) |
5 |
4
|
rabxp |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } |
6 |
5
|
a1i |
⊢ ( 𝐶 ∈ Cat → { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } ) |
7 |
6
|
releqd |
⊢ ( 𝐶 ∈ Cat → ( Rel { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ↔ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } ) ) |
8 |
2 7
|
mpbird |
⊢ ( 𝐶 ∈ Cat → Rel { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) |
9 |
|
isofn |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
10 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
11 |
|
sqxpexg |
⊢ ( ( Base ‘ 𝐶 ) ∈ V → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ) |
12 |
10 11
|
mp1i |
⊢ ( 𝐶 ∈ Cat → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ ∈ V ) |
15 |
|
suppvalfn |
⊢ ( ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ∧ ∅ ∈ V ) → ( ( Iso ‘ 𝐶 ) supp ∅ ) = { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) |
16 |
9 12 14 15
|
syl3anc |
⊢ ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) supp ∅ ) = { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) |
17 |
16
|
releqd |
⊢ ( 𝐶 ∈ Cat → ( Rel ( ( Iso ‘ 𝐶 ) supp ∅ ) ↔ Rel { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) ) |
18 |
8 17
|
mpbird |
⊢ ( 𝐶 ∈ Cat → Rel ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
19 |
|
cicfval |
⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
20 |
19
|
releqd |
⊢ ( 𝐶 ∈ Cat → ( Rel ( ≃𝑐 ‘ 𝐶 ) ↔ Rel ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
21 |
18 20
|
mpbird |
⊢ ( 𝐶 ∈ Cat → Rel ( ≃𝑐 ‘ 𝐶 ) ) |
22 |
|
cicsym |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ) → 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) |
23 |
|
cictr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) |
24 |
23
|
3expb |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) |
25 |
|
cicref |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) |
26 |
|
ciclcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
27 |
25 26
|
impbida |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) ) |
28 |
21 22 24 27
|
iserd |
⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) Er ( Base ‘ 𝐶 ) ) |