| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relopabv | ⊢ Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 )  ≠  ∅ ) } | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐶  ∈  Cat  →  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 )  ≠  ∅ ) } ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑓  =  〈 𝑥 ,  𝑦 〉  →  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  =  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 4 | 3 | neeq1d | ⊢ ( 𝑓  =  〈 𝑥 ,  𝑦 〉  →  ( ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅  ↔  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 )  ≠  ∅ ) ) | 
						
							| 5 | 4 | rabxp | ⊢ { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 )  ≠  ∅ ) } | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐶  ∈  Cat  →  { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 )  ≠  ∅ ) } ) | 
						
							| 7 | 6 | releqd | ⊢ ( 𝐶  ∈  Cat  →  ( Rel  { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ }  ↔  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 ,  𝑦 〉 )  ≠  ∅ ) } ) ) | 
						
							| 8 | 2 7 | mpbird | ⊢ ( 𝐶  ∈  Cat  →  Rel  { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ } ) | 
						
							| 9 |  | isofn | ⊢ ( 𝐶  ∈  Cat  →  ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) | 
						
							| 10 |  | fvex | ⊢ ( Base ‘ 𝐶 )  ∈  V | 
						
							| 11 |  | sqxpexg | ⊢ ( ( Base ‘ 𝐶 )  ∈  V  →  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∈  V ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝐶  ∈  Cat  →  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∈  V ) | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝐶  ∈  Cat  →  ∅  ∈  V ) | 
						
							| 15 |  | suppvalfn | ⊢ ( ( ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∈  V  ∧  ∅  ∈  V )  →  ( ( Iso ‘ 𝐶 )  supp  ∅ )  =  { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ } ) | 
						
							| 16 | 9 12 14 15 | syl3anc | ⊢ ( 𝐶  ∈  Cat  →  ( ( Iso ‘ 𝐶 )  supp  ∅ )  =  { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ } ) | 
						
							| 17 | 16 | releqd | ⊢ ( 𝐶  ∈  Cat  →  ( Rel  ( ( Iso ‘ 𝐶 )  supp  ∅ )  ↔  Rel  { 𝑓  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∣  ( ( Iso ‘ 𝐶 ) ‘ 𝑓 )  ≠  ∅ } ) ) | 
						
							| 18 | 8 17 | mpbird | ⊢ ( 𝐶  ∈  Cat  →  Rel  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 19 |  | cicfval | ⊢ ( 𝐶  ∈  Cat  →  (  ≃𝑐  ‘ 𝐶 )  =  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 20 | 19 | releqd | ⊢ ( 𝐶  ∈  Cat  →  ( Rel  (  ≃𝑐  ‘ 𝐶 )  ↔  Rel  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( 𝐶  ∈  Cat  →  Rel  (  ≃𝑐  ‘ 𝐶 ) ) | 
						
							| 22 |  | cicsym | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑦 )  →  𝑦 (  ≃𝑐  ‘ 𝐶 ) 𝑥 ) | 
						
							| 23 |  | cictr | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑦  ∧  𝑦 (  ≃𝑐  ‘ 𝐶 ) 𝑧 )  →  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑧 ) | 
						
							| 24 | 23 | 3expb | ⊢ ( ( 𝐶  ∈  Cat  ∧  ( 𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑦  ∧  𝑦 (  ≃𝑐  ‘ 𝐶 ) 𝑧 ) )  →  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑧 ) | 
						
							| 25 |  | cicref | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑥 ) | 
						
							| 26 |  | ciclcl | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑥 )  →  𝑥  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 27 | 25 26 | impbida | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↔  𝑥 (  ≃𝑐  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 28 | 21 22 24 27 | iserd | ⊢ ( 𝐶  ∈  Cat  →  (  ≃𝑐  ‘ 𝐶 )  Er  ( Base ‘ 𝐶 ) ) |