Metamath Proof Explorer


Theorem cicfval

Description: The set of isomorphic objects of the category c . (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion cicfval ( 𝐶 ∈ Cat → ( ≃𝑐𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) )

Proof

Step Hyp Ref Expression
1 df-cic 𝑐 = ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) )
2 fveq2 ( 𝑐 = 𝐶 → ( Iso ‘ 𝑐 ) = ( Iso ‘ 𝐶 ) )
3 2 oveq1d ( 𝑐 = 𝐶 → ( ( Iso ‘ 𝑐 ) supp ∅ ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) )
4 id ( 𝐶 ∈ Cat → 𝐶 ∈ Cat )
5 ovexd ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) supp ∅ ) ∈ V )
6 1 3 4 5 fvmptd3 ( 𝐶 ∈ Cat → ( ≃𝑐𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) )