Description: The set of isomorphic objects of the category c . (Contributed by AV, 4-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cicfval | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cic | ⊢ ≃𝑐 = ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) ) | |
2 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Iso ‘ 𝑐 ) = ( Iso ‘ 𝐶 ) ) | |
3 | 2 | oveq1d | ⊢ ( 𝑐 = 𝐶 → ( ( Iso ‘ 𝑐 ) supp ∅ ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
4 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
5 | ovexd | ⊢ ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) supp ∅ ) ∈ V ) | |
6 | 1 3 4 5 | fvmptd3 | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |