Step |
Hyp |
Ref |
Expression |
1 |
|
cicfval |
⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
2 |
1
|
breqd |
⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ) ) |
3 |
|
isofn |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
4 |
|
fvexd |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) ∈ V ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
5
|
a1i |
⊢ ( 𝐶 ∈ Cat → ∅ ∈ V ) |
7 |
|
df-br |
⊢ ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
8 |
|
elsuppfng |
⊢ ( ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( Iso ‘ 𝐶 ) ∈ V ∧ ∅ ∈ V ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) ) ) |
9 |
7 8
|
syl5bb |
⊢ ( ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( Iso ‘ 𝐶 ) ∈ V ∧ ∅ ∈ V ) → ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) ) ) |
10 |
3 4 6 9
|
syl3anc |
⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) ) ) |
11 |
|
opelxp1 |
⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
12 |
11
|
adantr |
⊢ ( ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
13 |
10 12
|
syl6bi |
⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 → 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) |
14 |
2 13
|
sylbid |
⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) |
15 |
14
|
imp |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |