| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cicfval | ⊢ ( 𝐶  ∈  Cat  →  (  ≃𝑐  ‘ 𝐶 )  =  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 2 | 1 | breqd | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑅 (  ≃𝑐  ‘ 𝐶 ) 𝑆  ↔  𝑅 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑆 ) ) | 
						
							| 3 |  | isofn | ⊢ ( 𝐶  ∈  Cat  →  ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) | 
						
							| 4 |  | fvexd | ⊢ ( 𝐶  ∈  Cat  →  ( Iso ‘ 𝐶 )  ∈  V ) | 
						
							| 5 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐶  ∈  Cat  →  ∅  ∈  V ) | 
						
							| 7 |  | df-br | ⊢ ( 𝑅 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑆  ↔  〈 𝑅 ,  𝑆 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ ) ) | 
						
							| 8 |  | elsuppfng | ⊢ ( ( ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( Iso ‘ 𝐶 )  ∈  V  ∧  ∅  ∈  V )  →  ( 〈 𝑅 ,  𝑆 〉  ∈  ( ( Iso ‘ 𝐶 )  supp  ∅ )  ↔  ( 〈 𝑅 ,  𝑆 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 ,  𝑆 〉 )  ≠  ∅ ) ) ) | 
						
							| 9 | 7 8 | bitrid | ⊢ ( ( ( Iso ‘ 𝐶 )  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( Iso ‘ 𝐶 )  ∈  V  ∧  ∅  ∈  V )  →  ( 𝑅 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑆  ↔  ( 〈 𝑅 ,  𝑆 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 ,  𝑆 〉 )  ≠  ∅ ) ) ) | 
						
							| 10 | 3 4 6 9 | syl3anc | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑅 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑆  ↔  ( 〈 𝑅 ,  𝑆 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 ,  𝑆 〉 )  ≠  ∅ ) ) ) | 
						
							| 11 |  | opelxp2 | ⊢ ( 〈 𝑅 ,  𝑆 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  →  𝑆  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 〈 𝑅 ,  𝑆 〉  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ∧  ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 ,  𝑆 〉 )  ≠  ∅ )  →  𝑆  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 13 | 10 12 | biimtrdi | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑅 ( ( Iso ‘ 𝐶 )  supp  ∅ ) 𝑆  →  𝑆  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 14 | 2 13 | sylbid | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑅 (  ≃𝑐  ‘ 𝐶 ) 𝑆  →  𝑆  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑅 (  ≃𝑐  ‘ 𝐶 ) 𝑆 )  →  𝑆  ∈  ( Base ‘ 𝐶 ) ) |