Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicref | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ( ≃𝑐 ‘ 𝐶 ) 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 4 | simpr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) | |
| 5 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 6 | 2 5 3 4 | idiso | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ ( 𝑂 ( Iso ‘ 𝐶 ) 𝑂 ) ) |
| 7 | 1 2 3 4 4 6 | brcici | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ( ≃𝑐 ‘ 𝐶 ) 𝑂 ) |