Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cicref | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ( ≃𝑐 ‘ 𝐶 ) 𝑂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
3 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
4 | simpr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) | |
5 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
6 | 2 5 3 4 | idiso | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ ( 𝑂 ( Iso ‘ 𝐶 ) 𝑂 ) ) |
7 | 1 2 3 4 4 6 | brcici | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ( ≃𝑐 ‘ 𝐶 ) 𝑂 ) |