Metamath Proof Explorer


Theorem cicref

Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicref ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ( ≃𝑐𝐶 ) 𝑂 )

Proof

Step Hyp Ref Expression
1 eqid ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 )
2 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
3 simpl ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
4 simpr ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) )
5 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
6 2 5 3 4 idiso ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ ( 𝑂 ( Iso ‘ 𝐶 ) 𝑂 ) )
7 1 2 3 4 4 6 brcici ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ( ≃𝑐𝐶 ) 𝑂 )