Step |
Hyp |
Ref |
Expression |
1 |
|
cicrcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
2 |
|
ciclcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
3 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
5 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
6 |
|
simpr |
⊢ ( ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
8 |
|
simpl |
⊢ ( ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
10 |
3 4 5 7 9
|
cic |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ) |
11 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
12 |
4 11 5 7 9 3
|
isoval |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) = dom ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) ) |
13 |
4 11 5 9 7
|
invsym2 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) = ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) = ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
15 |
14
|
dmeqd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → dom ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) = dom ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
16 |
|
df-rn |
⊢ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) = dom ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) |
17 |
15 16
|
eqtr4di |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → dom ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) = ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
18 |
12 17
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) = ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
19 |
18
|
eleq2d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ↔ 𝑓 ∈ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) ) |
20 |
|
vex |
⊢ 𝑓 ∈ V |
21 |
|
elrng |
⊢ ( 𝑓 ∈ V → ( 𝑓 ∈ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ↔ ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ) ) |
22 |
20 21
|
mp1i |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ↔ ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ) ) |
23 |
19 22
|
bitrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ↔ ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ) ) |
24 |
|
df-br |
⊢ ( 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ↔ 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
25 |
24
|
exbii |
⊢ ( ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ↔ ∃ 𝑔 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
26 |
|
vex |
⊢ 𝑔 ∈ V |
27 |
26 20
|
opeldm |
⊢ ( 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → 𝑔 ∈ dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
28 |
4 11 5 9 7 3
|
isoval |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) = dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) = ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) |
30 |
29
|
eleq2d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ↔ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) ) |
31 |
5
|
adantr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝐶 ∈ Cat ) |
32 |
9
|
adantr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
33 |
7
|
adantr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) |
35 |
3 4 31 32 33 34
|
brcici |
⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) |
36 |
35
|
ex |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
37 |
30 36
|
sylbid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
38 |
27 37
|
syl5com |
⊢ ( 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
39 |
38
|
exlimiv |
⊢ ( ∃ 𝑔 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
40 |
39
|
com12 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑔 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
41 |
25 40
|
syl5bi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
42 |
23 41
|
sylbid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
43 |
42
|
exlimdv |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
44 |
10 43
|
sylbid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
45 |
44
|
impancom |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → ( ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
46 |
1 2 45
|
mp2and |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) |