| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 2 | 1 | mptex | ⊢ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  ∈  V | 
						
							| 3 | 2 | csbex | ⊢ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  ∈  V | 
						
							| 4 | 3 | csbex | ⊢ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  ∈  V | 
						
							| 5 | 4 | csbex | ⊢ ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  ∈  V | 
						
							| 6 |  | df-cid | ⊢ Id  =  ( 𝑐  ∈  Cat  ↦  ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 7 | 5 6 | fnmpti | ⊢ Id  Fn  Cat |