Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑏 ∈ V |
2 |
1
|
mptex |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
3 |
2
|
csbex |
⊢ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
4 |
3
|
csbex |
⊢ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
5 |
4
|
csbex |
⊢ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
6 |
|
df-cid |
⊢ Id = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
7 |
5 6
|
fnmpti |
⊢ Id Fn Cat |