| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cidfn.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | cidfn.i | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 3 |  | riotaex | ⊢ ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) )  ∈  V | 
						
							| 4 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 5 | 3 4 | fnmpti | ⊢ ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) )  Fn  𝐵 | 
						
							| 6 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 7 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 8 |  | id | ⊢ ( 𝐶  ∈  Cat  →  𝐶  ∈  Cat ) | 
						
							| 9 | 1 6 7 8 2 | cidfval | ⊢ ( 𝐶  ∈  Cat  →   1   =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 10 | 9 | fneq1d | ⊢ ( 𝐶  ∈  Cat  →  (  1   Fn  𝐵  ↔  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) )  Fn  𝐵 ) ) | 
						
							| 11 | 5 10 | mpbiri | ⊢ ( 𝐶  ∈  Cat  →   1   Fn  𝐵 ) |