| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cidfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | cidfval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | cidfval.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | cidfval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | cidfval.i | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 6 |  | fvexd | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  ∈  V ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 9 |  | fvexd | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ( Hom  ‘ 𝑐 )  ∈  V ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  𝑐  =  𝐶 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ( Hom  ‘ 𝑐 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ( Hom  ‘ 𝑐 )  =  𝐻 ) | 
						
							| 13 |  | fvexd | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ( comp ‘ 𝑐 )  ∈  V ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  𝑐  =  𝐶 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ( comp ‘ 𝑐 )  =  ( comp ‘ 𝐶 ) ) | 
						
							| 16 | 15 3 | eqtr4di | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ( comp ‘ 𝑐 )  =   ·  ) | 
						
							| 17 |  | simpllr | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  𝑏  =  𝐵 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ℎ  =  𝐻 ) | 
						
							| 19 | 18 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 𝑥 ℎ 𝑥 )  =  ( 𝑥 𝐻 𝑥 ) ) | 
						
							| 20 | 18 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 𝑦 ℎ 𝑥 )  =  ( 𝑦 𝐻 𝑥 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  𝑜  =   ·  ) | 
						
							| 22 | 21 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 )  =  ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) ) | 
						
							| 23 | 22 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ↔  ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 25 | 20 24 | raleqbidv | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 26 | 18 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 𝑥 ℎ 𝑦 )  =  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 27 | 21 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 )  =  ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) ) | 
						
							| 28 | 27 | oveqd | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 ) ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓  ↔  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 30 | 26 29 | raleqbidv | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 31 | 25 30 | anbi12d | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 )  ↔  ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 32 | 17 31 | raleqbidv | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 )  ↔  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 33 | 19 32 | riotaeqbidv | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) )  =  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 34 | 17 33 | mpteq12dv | ⊢ ( ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  ∧  𝑜  =   ·  )  →  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 35 | 13 16 34 | csbied2 | ⊢ ( ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  ∧  ℎ  =  𝐻 )  →  ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 36 | 9 12 35 | csbied2 | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑏  =  𝐵 )  →  ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 37 | 6 8 36 | csbied2 | ⊢ ( 𝑐  =  𝐶  →  ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 38 |  | df-cid | ⊢ Id  =  ( 𝑐  ∈  Cat  ↦  ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 39 | 37 38 1 | mptfvmpt | ⊢ ( 𝐶  ∈  Cat  →  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 40 | 4 39 | syl | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 41 | 5 40 | eqtrid | ⊢ ( 𝜑  →   1   =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑔  ∈  ( 𝑥 𝐻 𝑥 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) |