Step |
Hyp |
Ref |
Expression |
1 |
|
catpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
2 |
|
catpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
3 |
|
catpropd.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
4 |
|
catpropd.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
5 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
10 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
11 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
12 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
13 |
7 8 9 10 11 12
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
14 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
16 |
1
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
17 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
18 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
19 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
20 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
21 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
22 |
7 8 14 15 16 17 18 19 19 20 21
|
comfeqval |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) ) |
23 |
22
|
eqeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
24 |
13 23
|
raleqbidva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
25 |
7 8 9 10 12 11
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
26 |
10
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
27 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
28 |
12
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
29 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
30 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
31 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
32 |
7 8 14 15 26 27 28 28 29 30 31
|
comfeqval |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) ) |
33 |
32
|
eqeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
34 |
25 33
|
raleqbidva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
35 |
24 34
|
anbi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
36 |
35
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
37 |
36
|
riotabidva |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
38 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
40 |
7 8 9 38 39 39
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
41 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
42 |
41
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
43 |
40 42
|
riotaeqbidv |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
44 |
37 43
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
45 |
6 44
|
mpteq12dva |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) |
47 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
48 |
7 8 14 46 47
|
cidfval |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
50 |
1 2 3 4
|
catpropd |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
51 |
50
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
52 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
53 |
49 9 15 51 52
|
cidfval |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Id ‘ 𝐷 ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
54 |
45 48 53
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ¬ 𝐶 ∈ Cat ) |
56 |
|
cidffn |
⊢ Id Fn Cat |
57 |
56
|
fndmi |
⊢ dom Id = Cat |
58 |
57
|
eleq2i |
⊢ ( 𝐶 ∈ dom Id ↔ 𝐶 ∈ Cat ) |
59 |
55 58
|
sylnibr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ¬ 𝐶 ∈ dom Id ) |
60 |
|
ndmfv |
⊢ ( ¬ 𝐶 ∈ dom Id → ( Id ‘ 𝐶 ) = ∅ ) |
61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ∅ ) |
62 |
57
|
eleq2i |
⊢ ( 𝐷 ∈ dom Id ↔ 𝐷 ∈ Cat ) |
63 |
50 62
|
bitr4di |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ dom Id ) ) |
64 |
63
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐶 ∈ Cat ↔ ¬ 𝐷 ∈ dom Id ) ) |
65 |
64
|
biimpa |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ¬ 𝐷 ∈ dom Id ) |
66 |
|
ndmfv |
⊢ ( ¬ 𝐷 ∈ dom Id → ( Id ‘ 𝐷 ) = ∅ ) |
67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ( Id ‘ 𝐷 ) = ∅ ) |
68 |
61 67
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
69 |
54 68
|
pm2.61dan |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |