Step |
Hyp |
Ref |
Expression |
1 |
|
cidfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
cidfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
cidfval.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
cidfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
cidfval.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
6 |
|
cidval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
1 2 3 4 5
|
cidfval |
⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
9 |
8 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑋 𝐻 𝑋 ) ) |
10 |
8
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑋 ) ) |
11 |
8
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 𝑦 , 𝑥 〉 = 〈 𝑦 , 𝑋 〉 ) |
12 |
11 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) = ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) ) |
13 |
12
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
14 |
13
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
15 |
10 14
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
16 |
8
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) |
17 |
8 8
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 𝑥 , 𝑥 〉 = 〈 𝑋 , 𝑋 〉 ) |
18 |
17
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ) |
19 |
18
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) ) |
20 |
19
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
21 |
16 20
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
22 |
15 21
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
23 |
22
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
24 |
9 23
|
riotaeqbidv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ℩ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
25 |
|
riotaex |
⊢ ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ V ) |
27 |
7 24 6 26
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |