Step |
Hyp |
Ref |
Expression |
1 |
|
circgrp.1 |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
2 |
|
circgrp.2 |
⊢ 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
5 |
4
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( i · 𝑦 ) ) ) |
6 |
5 1
|
efifo |
⊢ ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) : ℝ –onto→ 𝐶 |
7 |
|
forn |
⊢ ( ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) : ℝ –onto→ 𝐶 → ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = 𝐶 ) |
8 |
6 7
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = 𝐶 |
9 |
8
|
eqcomi |
⊢ 𝐶 = ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) |
10 |
9
|
oveq2i |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 ) = ( ( mulGrp ‘ ℂfld ) ↾s ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) |
11 |
2 10
|
eqtri |
⊢ 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) |
12 |
|
ax-icn |
⊢ i ∈ ℂ |
13 |
12
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
14 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
15 |
14
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
16 |
|
subrgsubg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
17 |
15 16
|
ax-mp |
⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
18 |
17
|
a1i |
⊢ ( ⊤ → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
19 |
5 11 13 18
|
efabl |
⊢ ( ⊤ → 𝑇 ∈ Abel ) |
20 |
19
|
mptru |
⊢ 𝑇 ∈ Abel |