Metamath Proof Explorer


Theorem circlemeth

Description: The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses circlemeth.n ( 𝜑𝑁 ∈ ℕ0 )
circlemeth.s ( 𝜑𝑆 ∈ ℕ )
circlemeth.l ( 𝜑𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
Assertion circlemeth ( 𝜑 → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 circlemeth.n ( 𝜑𝑁 ∈ ℕ0 )
2 circlemeth.s ( 𝜑𝑆 ∈ ℕ )
3 circlemeth.l ( 𝜑𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
4 1 adantr ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → 𝑁 ∈ ℕ0 )
5 ioossre ( 0 (,) 1 ) ⊆ ℝ
6 ax-resscn ℝ ⊆ ℂ
7 5 6 sstri ( 0 (,) 1 ) ⊆ ℂ
8 7 a1i ( 𝜑 → ( 0 (,) 1 ) ⊆ ℂ )
9 8 sselda ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → 𝑥 ∈ ℂ )
10 2 nnnn0d ( 𝜑𝑆 ∈ ℕ0 )
11 10 adantr ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → 𝑆 ∈ ℕ0 )
12 3 adantr ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
13 4 9 11 12 vtsprod ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) )
14 13 oveq1d ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) )
15 fzfid ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin )
16 ax-icn i ∈ ℂ
17 2cn 2 ∈ ℂ
18 picn π ∈ ℂ
19 17 18 mulcli ( 2 · π ) ∈ ℂ
20 16 19 mulcli ( i · ( 2 · π ) ) ∈ ℂ
21 20 a1i ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( i · ( 2 · π ) ) ∈ ℂ )
22 1 nn0cnd ( 𝜑𝑁 ∈ ℂ )
23 22 negcld ( 𝜑 → - 𝑁 ∈ ℂ )
24 23 ralrimivw ( 𝜑 → ∀ 𝑥 ∈ ( 0 (,) 1 ) - 𝑁 ∈ ℂ )
25 24 r19.21bi ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → - 𝑁 ∈ ℂ )
26 25 9 mulcld ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( - 𝑁 · 𝑥 ) ∈ ℂ )
27 21 26 mulcld ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ∈ ℂ )
28 27 efcld ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ∈ ℂ )
29 fz1ssnn ( 1 ... 𝑁 ) ⊆ ℕ
30 29 a1i ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ⊆ ℕ )
31 fzssz ( 0 ... ( 𝑆 · 𝑁 ) ) ⊆ ℤ
32 simpr ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) )
33 31 32 sseldi ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℤ )
34 33 adantlr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℤ )
35 11 adantr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑆 ∈ ℕ0 )
36 fzfid ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin )
37 30 34 35 36 reprfi ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∈ Fin )
38 fzofi ( 0 ..^ 𝑆 ) ∈ Fin
39 38 a1i ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin )
40 1 ad3antrrr ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑁 ∈ ℕ0 )
41 10 ad3antrrr ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑆 ∈ ℕ0 )
42 33 zcnd ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℂ )
43 42 ad2antrr ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑚 ∈ ℂ )
44 3 ad3antrrr ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
45 simpr ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) )
46 29 a1i ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 1 ... 𝑁 ) ⊆ ℕ )
47 33 adantr ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑚 ∈ ℤ )
48 10 ad2antrr ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑆 ∈ ℕ0 )
49 simpr ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) )
50 46 47 48 49 reprf ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) )
51 50 ffvelrnda ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐𝑎 ) ∈ ( 1 ... 𝑁 ) )
52 29 51 sseldi ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐𝑎 ) ∈ ℕ )
53 40 41 43 44 45 52 breprexplemb ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
54 53 adantl3r ( ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
55 39 54 fprodcl ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
56 20 a1i ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( i · ( 2 · π ) ) ∈ ℂ )
57 34 zcnd ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℂ )
58 9 adantr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑥 ∈ ℂ )
59 57 58 mulcld ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 · 𝑥 ) ∈ ℂ )
60 56 59 mulcld ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ∈ ℂ )
61 60 efcld ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ∈ ℂ )
62 61 adantr ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ∈ ℂ )
63 55 62 mulcld ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) ∈ ℂ )
64 37 63 fsumcl ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) ∈ ℂ )
65 15 28 64 fsummulc1 ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) )
66 28 adantr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ∈ ℂ )
67 37 66 63 fsummulc1 ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) )
68 66 adantr ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ∈ ℂ )
69 55 62 68 mulassd ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) )
70 27 adantr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ∈ ℂ )
71 efadd ( ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ∈ ℂ ∧ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ∈ ℂ ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) )
72 60 70 71 syl2anc ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) )
73 26 adantr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( - 𝑁 · 𝑥 ) ∈ ℂ )
74 56 59 73 adddid ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) ) = ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) )
75 25 adantr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → - 𝑁 ∈ ℂ )
76 57 75 58 adddird ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 + - 𝑁 ) · 𝑥 ) = ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) )
77 22 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑁 ∈ ℂ )
78 57 77 negsubd ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 + - 𝑁 ) = ( 𝑚𝑁 ) )
79 78 oveq1d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 + - 𝑁 ) · 𝑥 ) = ( ( 𝑚𝑁 ) · 𝑥 ) )
80 76 79 eqtr3d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) = ( ( 𝑚𝑁 ) · 𝑥 ) )
81 80 oveq2d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) ) = ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) )
82 74 81 eqtr3d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) = ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) )
83 82 fveq2d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) )
84 72 83 eqtr3d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) )
85 84 oveq2d ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
86 85 adantr ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
87 69 86 eqtrd ( ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
88 87 sumeq2dv ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
89 67 88 eqtrd ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
90 89 sumeq2dv ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
91 14 65 90 3eqtrd ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) )
92 91 itgeq2dv ( 𝜑 → ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 )
93 ioombl ( 0 (,) 1 ) ∈ dom vol
94 93 a1i ( 𝜑 → ( 0 (,) 1 ) ∈ dom vol )
95 fzfid ( 𝜑 → ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin )
96 sumex Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ V
97 96 a1i ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 (,) 1 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ V )
98 94 adantr ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 (,) 1 ) ∈ dom vol )
99 29 a1i ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ⊆ ℕ )
100 10 adantr ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑆 ∈ ℕ0 )
101 fzfid ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin )
102 99 33 100 101 reprfi ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∈ Fin )
103 38 a1i ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin )
104 53 adantllr ( ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
105 103 104 fprodcl ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
106 57 77 subcld ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚𝑁 ) ∈ ℂ )
107 106 58 mulcld ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚𝑁 ) · 𝑥 ) ∈ ℂ )
108 56 107 mulcld ( ( ( 𝜑𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ∈ ℂ )
109 108 an32s ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ∈ ℂ )
110 109 adantr ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ∈ ℂ )
111 110 efcld ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ∈ ℂ )
112 105 111 mulcld ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ ℂ )
113 112 anasss ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ ( 𝑥 ∈ ( 0 (,) 1 ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ ℂ )
114 38 a1i ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin )
115 114 53 fprodcl ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
116 fvex ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ∈ V
117 116 a1i ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ∈ V )
118 ioossicc ( 0 (,) 1 ) ⊆ ( 0 [,] 1 )
119 118 a1i ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) )
120 93 a1i ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 (,) 1 ) ∈ dom vol )
121 116 a1i ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ∈ V )
122 0red ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 0 ∈ ℝ )
123 1red ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 1 ∈ ℝ )
124 22 adantr ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑁 ∈ ℂ )
125 42 124 subcld ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚𝑁 ) ∈ ℂ )
126 unitsscn ( 0 [,] 1 ) ⊆ ℂ
127 126 a1i ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 [,] 1 ) ⊆ ℂ )
128 ssidd ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ℂ ⊆ ℂ )
129 cncfmptc ( ( ( 𝑚𝑁 ) ∈ ℂ ∧ ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑚𝑁 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) )
130 125 127 128 129 syl3anc ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑚𝑁 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) )
131 cncfmptid ( ( ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) )
132 127 128 131 syl2anc ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) )
133 130 132 mulcncf ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑚𝑁 ) · 𝑥 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) )
134 133 efmul2picn ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) )
135 cniccibl ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 )
136 122 123 134 135 syl3anc ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 )
137 119 120 121 136 iblss ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 )
138 137 adantr ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 )
139 115 117 138 iblmulc2 ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 )
140 98 102 113 139 itgfsum ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 ∧ ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) )
141 140 simpld ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 )
142 94 95 97 141 itgfsum ( 𝜑 → ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 ∧ ∫ ( 0 (,) 1 ) Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) )
143 142 simprd ( 𝜑 → ∫ ( 0 (,) 1 ) Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 )
144 oveq2 ( if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) = 1 → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · 1 ) )
145 oveq2 ( if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) = 0 → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · 0 ) )
146 102 115 fsumcl ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
147 146 mulid1d ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · 1 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
148 146 mul01d ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · 0 ) = 0 )
149 144 145 147 148 ifeq3da ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → if ( ( 𝑚𝑁 ) = 0 , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) )
150 velsn ( 𝑚 ∈ { 𝑁 } ↔ 𝑚 = 𝑁 )
151 42 124 subeq0ad ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚𝑁 ) = 0 ↔ 𝑚 = 𝑁 ) )
152 150 151 bitr4id ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 ∈ { 𝑁 } ↔ ( 𝑚𝑁 ) = 0 ) )
153 152 ifbid ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) = if ( ( 𝑚𝑁 ) = 0 , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) )
154 1 nn0zd ( 𝜑𝑁 ∈ ℤ )
155 154 ad2antrr ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑁 ∈ ℤ )
156 47 155 zsubcld ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 𝑚𝑁 ) ∈ ℤ )
157 itgexpif ( ( 𝑚𝑁 ) ∈ ℤ → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 = if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) )
158 156 157 syl ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 = if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) )
159 158 oveq2d ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) )
160 159 sumeq2dv ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) )
161 1cnd ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 1 ∈ ℂ )
162 0cnd ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 0 ∈ ℂ )
163 161 162 ifcld ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ∈ ℂ )
164 102 163 115 fsummulc1 ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) )
165 160 164 eqtr4d ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · if ( ( 𝑚𝑁 ) = 0 , 1 , 0 ) ) )
166 149 153 165 3eqtr4rd ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) )
167 166 sumeq2dv ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) )
168 0zd ( 𝜑 → 0 ∈ ℤ )
169 10 nn0zd ( 𝜑𝑆 ∈ ℤ )
170 169 154 zmulcld ( 𝜑 → ( 𝑆 · 𝑁 ) ∈ ℤ )
171 1 nn0ge0d ( 𝜑 → 0 ≤ 𝑁 )
172 nnmulge ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑆 · 𝑁 ) )
173 2 1 172 syl2anc ( 𝜑𝑁 ≤ ( 𝑆 · 𝑁 ) )
174 elfz4 ( ( ( 0 ∈ ℤ ∧ ( 𝑆 · 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝑁𝑁 ≤ ( 𝑆 · 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) )
175 168 170 154 171 173 174 syl32anc ( 𝜑𝑁 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) )
176 175 snssd ( 𝜑 → { 𝑁 } ⊆ ( 0 ... ( 𝑆 · 𝑁 ) ) )
177 176 sselda ( ( 𝜑𝑚 ∈ { 𝑁 } ) → 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) )
178 177 146 syldan ( ( 𝜑𝑚 ∈ { 𝑁 } ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
179 178 ralrimiva ( 𝜑 → ∀ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
180 95 olcd ( 𝜑 → ( ( 0 ... ( 𝑆 · 𝑁 ) ) ⊆ ( ℤ ‘ 0 ) ∨ ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin ) )
181 sumss2 ( ( ( { 𝑁 } ⊆ ( 0 ... ( 𝑆 · 𝑁 ) ) ∧ ∀ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ ) ∧ ( ( 0 ... ( 𝑆 · 𝑁 ) ) ⊆ ( ℤ ‘ 0 ) ∨ ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin ) ) → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) )
182 176 179 180 181 syl21anc ( 𝜑 → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) , 0 ) )
183 29 a1i ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ )
184 fzfid ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin )
185 183 154 10 184 reprfi ( 𝜑 → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∈ Fin )
186 38 a1i ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin )
187 1 ad2antrr ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑁 ∈ ℕ0 )
188 10 ad2antrr ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑆 ∈ ℕ0 )
189 22 ad2antrr ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑁 ∈ ℂ )
190 3 ad2antrr ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) )
191 simpr ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) )
192 29 a1i ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → ( 1 ... 𝑁 ) ⊆ ℕ )
193 154 adantr ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑁 ∈ ℤ )
194 10 adantr ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑆 ∈ ℕ0 )
195 simpr ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) )
196 192 193 194 195 reprf ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) )
197 196 ffvelrnda ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐𝑎 ) ∈ ( 1 ... 𝑁 ) )
198 29 197 sseldi ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐𝑎 ) ∈ ℕ )
199 187 188 189 190 191 198 breprexplemb ( ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
200 186 199 fprodcl ( ( 𝜑𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
201 185 200 fsumcl ( 𝜑 → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ )
202 oveq2 ( 𝑚 = 𝑁 → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) = ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) )
203 202 sumeq1d ( 𝑚 = 𝑁 → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
204 203 sumsn ( ( 𝑁 ∈ ℕ0 ∧ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
205 1 201 204 syl2anc ( 𝜑 → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
206 167 182 205 3eqtr2d ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
207 140 simprd ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 )
208 111 an32s ( ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ∈ ℂ )
209 115 208 138 itgmulc2 ( ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 )
210 209 sumeq2dv ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 )
211 207 210 eqtr4d ( ( 𝜑𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) )
212 211 sumeq2dv ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) d 𝑥 ) )
213 1 10 reprfz1 ( 𝜑 → ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) = ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) )
214 213 sumeq1d ( 𝜑 → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
215 206 212 214 3eqtr4d ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) )
216 92 143 215 3eqtrrd ( 𝜑 → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿𝑎 ) ‘ ( 𝑐𝑎 ) ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 )