Step |
Hyp |
Ref |
Expression |
1 |
|
circlevma.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
3nn |
⊢ 3 ∈ ℕ |
3 |
2
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ ) |
4 |
|
vmaf |
⊢ Λ : ℕ ⟶ ℝ |
5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
6 |
|
fss |
⊢ ( ( Λ : ℕ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → Λ : ℕ ⟶ ℂ ) |
7 |
4 5 6
|
mp2an |
⊢ Λ : ℕ ⟶ ℂ |
8 |
|
cnex |
⊢ ℂ ∈ V |
9 |
|
nnex |
⊢ ℕ ∈ V |
10 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ ℕ ∈ V ) → ( Λ ∈ ( ℂ ↑m ℕ ) ↔ Λ : ℕ ⟶ ℂ ) ) |
11 |
8 9 10
|
mp2an |
⊢ ( Λ ∈ ( ℂ ↑m ℕ ) ↔ Λ : ℕ ⟶ ℂ ) |
12 |
7 11
|
mpbir |
⊢ Λ ∈ ( ℂ ↑m ℕ ) |
13 |
12
|
fconst6 |
⊢ ( ( 0 ..^ 3 ) × { Λ } ) : ( 0 ..^ 3 ) ⟶ ( ℂ ↑m ℕ ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ 3 ) × { Λ } ) : ( 0 ..^ 3 ) ⟶ ( ℂ ↑m ℕ ) ) |
15 |
1 3 14
|
circlemeth |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
16 |
|
c0ex |
⊢ 0 ∈ V |
17 |
16
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
18 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
19 |
17 18
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
20 |
|
eleq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 ∈ ( 0 ..^ 3 ) ↔ 0 ∈ ( 0 ..^ 3 ) ) ) |
21 |
19 20
|
mpbiri |
⊢ ( 𝑎 = 0 → 𝑎 ∈ ( 0 ..^ 3 ) ) |
22 |
12
|
elexi |
⊢ Λ ∈ V |
23 |
22
|
fvconst2 |
⊢ ( 𝑎 ∈ ( 0 ..^ 3 ) → ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) = Λ ) |
24 |
21 23
|
syl |
⊢ ( 𝑎 = 0 → ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) = Λ ) |
25 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( 𝑛 ‘ 𝑎 ) = ( 𝑛 ‘ 0 ) ) |
26 |
24 25
|
fveq12d |
⊢ ( 𝑎 = 0 → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
27 |
|
1ex |
⊢ 1 ∈ V |
28 |
27
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
29 |
28 18
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
30 |
|
eleq1 |
⊢ ( 𝑎 = 1 → ( 𝑎 ∈ ( 0 ..^ 3 ) ↔ 1 ∈ ( 0 ..^ 3 ) ) ) |
31 |
29 30
|
mpbiri |
⊢ ( 𝑎 = 1 → 𝑎 ∈ ( 0 ..^ 3 ) ) |
32 |
31 23
|
syl |
⊢ ( 𝑎 = 1 → ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) = Λ ) |
33 |
|
fveq2 |
⊢ ( 𝑎 = 1 → ( 𝑛 ‘ 𝑎 ) = ( 𝑛 ‘ 1 ) ) |
34 |
32 33
|
fveq12d |
⊢ ( 𝑎 = 1 → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
35 |
|
2ex |
⊢ 2 ∈ V |
36 |
35
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
37 |
36 18
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
38 |
|
eleq1 |
⊢ ( 𝑎 = 2 → ( 𝑎 ∈ ( 0 ..^ 3 ) ↔ 2 ∈ ( 0 ..^ 3 ) ) ) |
39 |
37 38
|
mpbiri |
⊢ ( 𝑎 = 2 → 𝑎 ∈ ( 0 ..^ 3 ) ) |
40 |
39 23
|
syl |
⊢ ( 𝑎 = 2 → ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) = Λ ) |
41 |
|
fveq2 |
⊢ ( 𝑎 = 2 → ( 𝑛 ‘ 𝑎 ) = ( 𝑛 ‘ 2 ) ) |
42 |
40 41
|
fveq12d |
⊢ ( 𝑎 = 2 → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) |
43 |
23
|
fveq1d |
⊢ ( 𝑎 ∈ ( 0 ..^ 3 ) → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ( Λ ‘ ( 𝑛 ‘ 𝑎 ) ) ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ( Λ ‘ ( 𝑛 ‘ 𝑎 ) ) ) |
45 |
7
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → Λ : ℕ ⟶ ℂ ) |
46 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ℕ ⊆ ℕ ) |
47 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝑁 ∈ ℤ ) |
49 |
2
|
nnnn0i |
⊢ 3 ∈ ℕ0 |
50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 3 ∈ ℕ0 ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
52 |
46 48 50 51
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) |
53 |
52
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( 𝑛 ‘ 𝑎 ) ∈ ℕ ) |
54 |
45 53
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( Λ ‘ ( 𝑛 ‘ 𝑎 ) ) ∈ ℂ ) |
55 |
44 54
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) ∈ ℂ ) |
56 |
26 34 42 55
|
prodfzo03 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) |
57 |
56
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) ‘ ( 𝑛 ‘ 𝑎 ) ) = Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) |
58 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) = Λ ) |
59 |
58
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) = ( Λ vts 𝑁 ) ) |
60 |
59
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 3 ) ) → ( ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ) |
61 |
60
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ) |
62 |
|
fzofi |
⊢ ( 0 ..^ 3 ) ∈ Fin |
63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( 0 ..^ 3 ) ∈ Fin ) |
64 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑁 ∈ ℕ0 ) |
65 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
66 |
65 5
|
sstri |
⊢ ( 0 (,) 1 ) ⊆ ℂ |
67 |
66
|
a1i |
⊢ ( 𝜑 → ( 0 (,) 1 ) ⊆ ℂ ) |
68 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑥 ∈ ℂ ) |
69 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → Λ : ℕ ⟶ ℂ ) |
70 |
64 68 69
|
vtscl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ∈ ℂ ) |
71 |
|
fprodconst |
⊢ ( ( ( 0 ..^ 3 ) ∈ Fin ∧ ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ∈ ℂ ) → ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( Λ vts 𝑁 ) ‘ 𝑥 ) = ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ ( ♯ ‘ ( 0 ..^ 3 ) ) ) ) |
72 |
63 70 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( Λ vts 𝑁 ) ‘ 𝑥 ) = ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ ( ♯ ‘ ( 0 ..^ 3 ) ) ) ) |
73 |
|
hashfzo0 |
⊢ ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
74 |
49 73
|
ax-mp |
⊢ ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 |
75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
76 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ ( ♯ ‘ ( 0 ..^ 3 ) ) ) = ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ 3 ) ) |
77 |
61 72 76
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ 3 ) ) |
78 |
77
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ 3 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
79 |
78
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) × { Λ } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) ( ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ 3 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
80 |
15 57 79
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) = ∫ ( 0 (,) 1 ) ( ( ( ( Λ vts 𝑁 ) ‘ 𝑥 ) ↑ 3 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |