Description: Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005) (Proof shortened by Eric Schmidt, 2-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cj11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) ) | |
| 2 | cjcj | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) | |
| 3 | cjcj | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) | |
| 4 | 2 3 | eqeqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 5 | 1 4 | imbitrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 6 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 𝐵 ) ) | |
| 7 | 5 6 | impbid1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |