| Step |
Hyp |
Ref |
Expression |
| 1 |
|
readd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
| 2 |
|
imadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) |
| 3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) = ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 6 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 9 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 12 |
5 8 11
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 13 |
3 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 14 |
1 13
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 15 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 18 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 21 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 22 |
4 8 21
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 23 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 |
4 11 23
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 25 |
17 20 22 24
|
addsub4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 26 |
14 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 27 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 28 |
|
remim |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) ) |
| 30 |
|
remim |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 31 |
|
remim |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) = ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 32 |
30 31
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 33 |
26 29 32
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) ) |