Metamath Proof Explorer


Theorem cjaddi

Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypotheses recl.1 𝐴 ∈ ℂ
readdi.2 𝐵 ∈ ℂ
Assertion cjaddi ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 recl.1 𝐴 ∈ ℂ
2 readdi.2 𝐵 ∈ ℂ
3 cjadd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) )
4 1 2 3 mp2an ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) )