Metamath Proof Explorer
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of
Gleason p. 133. (Contributed by NM, 28-Jul-1999)
|
|
Ref |
Expression |
|
Hypotheses |
recl.1 |
⊢ 𝐴 ∈ ℂ |
|
|
readdi.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
cjaddi |
⊢ ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recl.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
readdi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
cjadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) |