Step |
Hyp |
Ref |
Expression |
1 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
recj |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → ( ℜ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) ) |
4 |
|
recj |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
5 |
3 4
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
6 |
|
imcj |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ) |
7 |
1 6
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ) |
8 |
|
imcj |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
9 |
8
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - - ( ℑ ‘ 𝐴 ) ) |
10 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
12 |
11
|
negnegd |
⊢ ( 𝐴 ∈ ℂ → - - ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 𝐴 ) ) |
13 |
9 12
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
14 |
7 13
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) |
16 |
5 15
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) + ( i · ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
17 |
|
cjcl |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
18 |
|
replim |
⊢ ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = ( ( ℜ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) + ( i · ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
19 |
1 17 18
|
3syl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = ( ( ℜ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) + ( i · ( ℑ ‘ ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
20 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
21 |
16 19 20
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |