Step |
Hyp |
Ref |
Expression |
1 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
2 |
|
cjcl |
⊢ ( 𝑧 ∈ ℂ → ( ∗ ‘ 𝑧 ) ∈ ℂ ) |
3 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
subcl |
⊢ ( ( ( ∗ ‘ 𝑧 ) ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
6 |
5
|
abscld |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ ) |
7 |
|
cjsub |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( 𝑧 − 𝐴 ) ) = ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ ( 𝑧 − 𝐴 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
9 |
|
subcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑧 − 𝐴 ) ∈ ℂ ) |
10 |
9
|
abscjd |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ ( 𝑧 − 𝐴 ) ) ) = ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
11 |
8 10
|
eqtr3d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
12 |
6 11
|
eqled |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
13 |
1 12
|
cn1lem |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) < 𝑥 ) ) |