Metamath Proof Explorer


Theorem cjcn2

Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion cjcn2 ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 cjf ∗ : ℂ ⟶ ℂ
2 cjcl ( 𝑧 ∈ ℂ → ( ∗ ‘ 𝑧 ) ∈ ℂ )
3 cjcl ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ )
4 subcl ( ( ( ∗ ‘ 𝑧 ) ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ )
5 2 3 4 syl2an ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ )
6 5 abscld ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ )
7 cjsub ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( 𝑧𝐴 ) ) = ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) )
8 7 fveq2d ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ ( 𝑧𝐴 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) )
9 subcl ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑧𝐴 ) ∈ ℂ )
10 9 abscjd ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ ( 𝑧𝐴 ) ) ) = ( abs ‘ ( 𝑧𝐴 ) ) )
11 8 10 eqtr3d ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑧𝐴 ) ) )
12 6 11 eqled ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧𝐴 ) ) )
13 1 12 cn1lem ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) < 𝑥 ) )