| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cjf | ⊢ ∗ : ℂ ⟶ ℂ | 
						
							| 2 |  | cjcn2 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  ℂ ( ( abs ‘ ( 𝑤  −  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( ∗ ‘ 𝑤 )  −  ( ∗ ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 3 | 2 | rgen2 | ⊢ ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  ℂ ( ( abs ‘ ( 𝑤  −  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( ∗ ‘ 𝑤 )  −  ( ∗ ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 4 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 5 |  | elcncf2 | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ∗  ∈  ( ℂ –cn→ ℂ )  ↔  ( ∗ : ℂ ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  ℂ ( ( abs ‘ ( 𝑤  −  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( ∗ ‘ 𝑤 )  −  ( ∗ ‘ 𝑥 ) ) )  <  𝑦 ) ) ) ) | 
						
							| 6 | 4 4 5 | mp2an | ⊢ ( ∗  ∈  ( ℂ –cn→ ℂ )  ↔  ( ∗ : ℂ ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  ℂ ( ( abs ‘ ( 𝑤  −  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( ∗ ‘ 𝑤 )  −  ( ∗ ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 7 | 1 3 6 | mpbir2an | ⊢ ∗  ∈  ( ℂ –cn→ ℂ ) |