Step |
Hyp |
Ref |
Expression |
1 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
2 |
|
cjcn2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) ) |
3 |
2
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) |
4 |
|
ssid |
⊢ ℂ ⊆ ℂ |
5 |
|
elcncf2 |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ∗ ∈ ( ℂ –cn→ ℂ ) ↔ ( ∗ : ℂ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
6 |
4 4 5
|
mp2an |
⊢ ( ∗ ∈ ( ℂ –cn→ ℂ ) ↔ ( ∗ : ℂ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
7 |
1 3 6
|
mpbir2an |
⊢ ∗ ∈ ( ℂ –cn→ ℂ ) |