| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 2 |
|
cjcl |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
cjcl |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
| 8 |
|
cjne0 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 ↔ ( ∗ ‘ 𝐵 ) ≠ 0 ) ) |
| 9 |
4 8
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ≠ 0 ↔ ( ∗ ‘ 𝐵 ) ≠ 0 ) ) |
| 10 |
7 9
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ 𝐵 ) ≠ 0 ) |
| 11 |
3 6 10
|
divcan4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) / ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 12 |
|
cjmul |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) ) |
| 13 |
1 4 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) ) |
| 14 |
|
divcan1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ∗ ‘ 𝐴 ) ) |
| 16 |
13 15
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ 𝐴 ) ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) / ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
| 18 |
11 17
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |