Metamath Proof Explorer
Description: Complex conjugate distributes over division. (Contributed by Mario
Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
readdd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
cjdivd.2 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
|
Assertion |
cjdivd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
readdd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
cjdivd.2 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
4 |
|
cjdiv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |