Metamath Proof Explorer
		
		
		
		Description:  Complex conjugate distributes over division.  (Contributed by NM, 29-Apr-2005)  (Revised by Mario Carneiro, 29-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | recl.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | readdi.2 | ⊢ 𝐵  ∈  ℂ | 
				
					|  | Assertion | cjdivi | ⊢  ( 𝐵  ≠  0  →  ( ∗ ‘ ( 𝐴  /  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  /  ( ∗ ‘ 𝐵 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recl.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | readdi.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | cjdiv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ∗ ‘ ( 𝐴  /  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  /  ( ∗ ‘ 𝐵 ) ) ) | 
						
							| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐵  ≠  0  →  ( ∗ ‘ ( 𝐴  /  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  /  ( ∗ ‘ 𝐵 ) ) ) |