Metamath Proof Explorer
Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recl.1 |
⊢ 𝐴 ∈ ℂ |
|
|
readdi.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
cjdivi |
⊢ ( 𝐵 ≠ 0 → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recl.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
readdi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
cjdiv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |
4 |
1 2 3
|
mp3an12 |
⊢ ( 𝐵 ≠ 0 → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) ) |