Metamath Proof Explorer


Theorem cjdivi

Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recl.1 𝐴 ∈ ℂ
readdi.2 𝐵 ∈ ℂ
Assertion cjdivi ( 𝐵 ≠ 0 → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 recl.1 𝐴 ∈ ℂ
2 readdi.2 𝐵 ∈ ℂ
3 cjdiv ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) )
4 1 2 3 mp3an12 ( 𝐵 ≠ 0 → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) )