Metamath Proof Explorer


Theorem cjf

Description: Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion cjf ∗ : ℂ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 df-cj ∗ = ( 𝑥 ∈ ℂ ↦ ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) ) )
2 cju ( 𝑥 ∈ ℂ → ∃! 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) )
3 riotacl ( ∃! 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) → ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) ) ∈ ℂ )
4 2 3 syl ( 𝑥 ∈ ℂ → ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) ) ∈ ℂ )
5 1 4 fmpti ∗ : ℂ ⟶ ℂ