Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cji | ⊢ ( ∗ ‘ i ) = - i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rei | ⊢ ( ℜ ‘ i ) = 0 | |
| 2 | imi | ⊢ ( ℑ ‘ i ) = 1 | |
| 3 | 2 | oveq2i | ⊢ ( i · ( ℑ ‘ i ) ) = ( i · 1 ) |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | 4 | mulridi | ⊢ ( i · 1 ) = i |
| 6 | 3 5 | eqtri | ⊢ ( i · ( ℑ ‘ i ) ) = i |
| 7 | 1 6 | oveq12i | ⊢ ( ( ℜ ‘ i ) − ( i · ( ℑ ‘ i ) ) ) = ( 0 − i ) |
| 8 | remim | ⊢ ( i ∈ ℂ → ( ∗ ‘ i ) = ( ( ℜ ‘ i ) − ( i · ( ℑ ‘ i ) ) ) ) | |
| 9 | 4 8 | ax-mp | ⊢ ( ∗ ‘ i ) = ( ( ℜ ‘ i ) − ( i · ( ℑ ‘ i ) ) ) |
| 10 | df-neg | ⊢ - i = ( 0 − i ) | |
| 11 | 7 9 10 | 3eqtr4i | ⊢ ( ∗ ‘ i ) = - i |