Metamath Proof Explorer


Theorem cji

Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion cji ( ∗ ‘ i ) = - i

Proof

Step Hyp Ref Expression
1 rei ( ℜ ‘ i ) = 0
2 imi ( ℑ ‘ i ) = 1
3 2 oveq2i ( i · ( ℑ ‘ i ) ) = ( i · 1 )
4 ax-icn i ∈ ℂ
5 4 mulid1i ( i · 1 ) = i
6 3 5 eqtri ( i · ( ℑ ‘ i ) ) = i
7 1 6 oveq12i ( ( ℜ ‘ i ) − ( i · ( ℑ ‘ i ) ) ) = ( 0 − i )
8 remim ( i ∈ ℂ → ( ∗ ‘ i ) = ( ( ℜ ‘ i ) − ( i · ( ℑ ‘ i ) ) ) )
9 4 8 ax-mp ( ∗ ‘ i ) = ( ( ℜ ‘ i ) − ( i · ( ℑ ‘ i ) ) )
10 df-neg - i = ( 0 − i )
11 7 9 10 3eqtr4i ( ∗ ‘ i ) = - i