| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjcj |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 3 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
|
cjmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 5 |
3 4
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 6 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 7 |
3 6
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 8 |
2 5 7
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 9 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 |
3 9
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 11 |
|
cjreb |
⊢ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 13 |
8 12
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |