Metamath Proof Explorer


Theorem cjmulvald

Description: A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion cjmulvald ( 𝜑 → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 recld.1 ( 𝜑𝐴 ∈ ℂ )
2 cjmulval ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )
3 1 2 syl ( 𝜑 → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )