Metamath Proof Explorer


Theorem cjmulvali

Description: A complex number times its conjugate. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypothesis recl.1 𝐴 ∈ ℂ
Assertion cjmulvali ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 recl.1 𝐴 ∈ ℂ
2 cjmulval ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )
3 1 2 ax-mp ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )