Metamath Proof Explorer
Description: A number is nonzero iff its complex conjugate is nonzero.
(Contributed by Mario Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
cjne0d.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
Assertion |
cjne0d |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ≠ 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
cjne0d.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
cjne0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) |
5 |
2 4
|
mpbid |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ≠ 0 ) |