| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 7 |
3 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 8 |
2 7
|
neg2subd |
⊢ ( 𝐴 ∈ ℂ → ( - ( ℜ ‘ 𝐴 ) − - ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) − ( ℜ ‘ 𝐴 ) ) ) |
| 9 |
|
reneg |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 10 |
|
imneg |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ - 𝐴 ) ) = ( i · - ( ℑ ‘ 𝐴 ) ) ) |
| 12 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 13 |
3 5 12
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 14 |
11 13
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ - 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 15 |
9 14
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) = ( - ( ℜ ‘ 𝐴 ) − - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 16 |
2 7
|
negsubdi2d |
⊢ ( 𝐴 ∈ ℂ → - ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) − ( ℜ ‘ 𝐴 ) ) ) |
| 17 |
8 15 16
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) = - ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 18 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 19 |
|
remim |
⊢ ( - 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) ) |
| 21 |
|
remim |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 22 |
21
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( ∗ ‘ 𝐴 ) = - ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 23 |
17 20 22
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) ) |