Metamath Proof Explorer


Theorem cjnegd

Description: Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion cjnegd ( 𝜑 → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 recld.1 ( 𝜑𝐴 ∈ ℂ )
2 cjneg ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) )
3 1 2 syl ( 𝜑 → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) )