Metamath Proof Explorer


Theorem cjre

Description: A real number equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 8-Oct-1999)

Ref Expression
Assertion cjre ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 cjreb ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) )
3 2 biimpd ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) )
4 1 3 mpcom ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 )