Description: A real number equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 8-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjre | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | cjreb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) | |
| 3 | 2 | biimpd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) ) |
| 4 | 1 3 | mpcom | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |