Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
cjrebd
Metamath Proof Explorer
Description: A number is real iff it equals its complex conjugate. Proposition
10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro , 29-May-2016)
Ref
Expression
Hypotheses
recld.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
cjrebd.2
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) = 𝐴 )
Assertion
cjrebd
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
Proof
Step
Hyp
Ref
Expression
1
recld.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
cjrebd.2
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) = 𝐴 )
3
cjreb
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) )
4
1 3
syl
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) )
5
2 4
mpbird
⊢ ( 𝜑 → 𝐴 ∈ ℝ )