Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 11-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | recl.1 | ⊢ 𝐴 ∈ ℂ | |
Assertion | cjrebi | ⊢ ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl.1 | ⊢ 𝐴 ∈ ℂ | |
2 | cjreb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) |