Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
4 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
5 |
2 3 4
|
sylancr |
⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
6 |
|
cjadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( i · 𝐵 ) ) ) ) |
7 |
1 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( i · 𝐵 ) ) ) ) |
8 |
|
cjre |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
9 |
|
cjmul |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐵 ) ) ) |
10 |
2 3 9
|
sylancr |
⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐵 ) ) ) |
11 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
12 |
11
|
a1i |
⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ i ) = - i ) |
13 |
|
cjre |
⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ 𝐵 ) = 𝐵 ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝐵 ∈ ℝ → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐵 ) ) = ( - i · 𝐵 ) ) |
15 |
|
mulneg1 |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) = - ( i · 𝐵 ) ) |
16 |
2 3 15
|
sylancr |
⊢ ( 𝐵 ∈ ℝ → ( - i · 𝐵 ) = - ( i · 𝐵 ) ) |
17 |
10 14 16
|
3eqtrd |
⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ ( i · 𝐵 ) ) = - ( i · 𝐵 ) ) |
18 |
8 17
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( i · 𝐵 ) ) ) = ( 𝐴 + - ( i · 𝐵 ) ) ) |
19 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + - ( i · 𝐵 ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) |
20 |
1 5 19
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + - ( i · 𝐵 ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) |
21 |
7 18 20
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) |