| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
| 2 |
|
cjadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) ) |
| 4 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + - 𝐵 ) ) = ( ∗ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 6 |
|
cjneg |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ - 𝐵 ) = - ( ∗ ‘ 𝐵 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ - 𝐵 ) = - ( ∗ ‘ 𝐵 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + - ( ∗ ‘ 𝐵 ) ) ) |
| 9 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
|
cjcl |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 11 |
|
negsub |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + - ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |
| 12 |
9 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + - ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |
| 13 |
8 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ - 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |
| 14 |
3 5 13
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐵 ) ) ) |