Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | clabel | ⊢ ( { 𝑥 ∣ 𝜑 } ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel | ⊢ ( { 𝑥 ∣ 𝜑 } ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 = { 𝑥 ∣ 𝜑 } ∧ 𝑦 ∈ 𝐴 ) ) | |
2 | abeq2 | ⊢ ( 𝑦 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) | |
3 | 2 | anbi2ci | ⊢ ( ( 𝑦 = { 𝑥 ∣ 𝜑 } ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) ) |
4 | 3 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 = { 𝑥 ∣ 𝜑 } ∧ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) ) |
5 | 1 4 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) ) |