Metamath Proof Explorer


Theorem clabel

Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion clabel ( { 𝑥𝜑 } ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑥 ( 𝑥𝑦𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 dfclel ( { 𝑥𝜑 } ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 = { 𝑥𝜑 } ∧ 𝑦𝐴 ) )
2 abeq2 ( 𝑦 = { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝑦𝜑 ) )
3 2 anbi2ci ( ( 𝑦 = { 𝑥𝜑 } ∧ 𝑦𝐴 ) ↔ ( 𝑦𝐴 ∧ ∀ 𝑥 ( 𝑥𝑦𝜑 ) ) )
4 3 exbii ( ∃ 𝑦 ( 𝑦 = { 𝑥𝜑 } ∧ 𝑦𝐴 ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑥 ( 𝑥𝑦𝜑 ) ) )
5 1 4 bitri ( { 𝑥𝜑 } ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑥 ( 𝑥𝑦𝜑 ) ) )