Description: Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clatglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
clatglb.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
clatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
Assertion | clatglb | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | clatglb.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | clatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
4 | simpl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝐾 ∈ CLat ) | |
5 | 1 3 | clatglbcl2 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝐺 ) |
6 | 1 2 3 4 5 | glbprop | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |