Metamath Proof Explorer


Theorem clatglbcl

Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses clatglbcl.b 𝐵 = ( Base ‘ 𝐾 )
clatglbcl.g 𝐺 = ( glb ‘ 𝐾 )
Assertion clatglbcl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( 𝐺𝑆 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 clatglbcl.b 𝐵 = ( Base ‘ 𝐾 )
2 clatglbcl.g 𝐺 = ( glb ‘ 𝐾 )
3 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
4 1 3 2 clatlem ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝐺𝑆 ) ∈ 𝐵 ) )
5 4 simprd ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( 𝐺𝑆 ) ∈ 𝐵 )