Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clatglbcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
clatglbcl.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
Assertion | clatglbcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglbcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | clatglbcl.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
3 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
4 | 1 3 2 | clatlem | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) ) |
5 | 4 | simprd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |