| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clatglbcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
clatglbcl.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 3 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 4 |
3
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 5 |
4
|
biimpri |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 7 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 8 |
1 7 2
|
isclat |
⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
| 9 |
|
simprr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) → dom 𝐺 = 𝒫 𝐵 ) |
| 10 |
8 9
|
sylbi |
⊢ ( 𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝐺 = 𝒫 𝐵 ) |
| 12 |
6 11
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝐺 ) |