Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
3 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Poset ) |
4 |
1 2 3
|
joindmss |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( join ‘ 𝐾 ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
5 |
|
relxp |
⊢ Rel ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → Rel ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
7 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
8 |
|
vex |
⊢ 𝑥 ∈ V |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
8 9
|
prss |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ↔ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
11 |
7 10
|
sylbb |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
12 |
|
prex |
⊢ { 𝑥 , 𝑦 } ∈ V |
13 |
12
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
14 |
11 13
|
sylibr |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ) |
15 |
|
eleq2 |
⊢ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ) ) |
16 |
14 15
|
syl5ibr |
⊢ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
18 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
19 |
8
|
a1i |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑥 ∈ V ) |
20 |
9
|
a1i |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑦 ∈ V ) |
21 |
18 2 3 19 20
|
joindef |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom ( join ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
22 |
17 21
|
sylibrd |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ dom ( join ‘ 𝐾 ) ) ) |
23 |
6 22
|
relssdv |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ⊆ dom ( join ‘ 𝐾 ) ) |
24 |
4 23
|
eqssd |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
25 |
24
|
ex |
⊢ ( 𝐾 ∈ Poset → ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
26 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
27 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Poset ) |
28 |
1 26 27
|
meetdmss |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( meet ‘ 𝐾 ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
29 |
5
|
a1i |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → Rel ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
30 |
|
eleq2 |
⊢ ( dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ) ) |
31 |
14 30
|
syl5ibr |
⊢ ( dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
33 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
34 |
8
|
a1i |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑥 ∈ V ) |
35 |
9
|
a1i |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑦 ∈ V ) |
36 |
33 26 27 34 35
|
meetdef |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom ( meet ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
37 |
32 36
|
sylibrd |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ dom ( meet ‘ 𝐾 ) ) ) |
38 |
29 37
|
relssdv |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ⊆ dom ( meet ‘ 𝐾 ) ) |
39 |
28 38
|
eqssd |
⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
40 |
39
|
ex |
⊢ ( 𝐾 ∈ Poset → ( dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
41 |
25 40
|
anim12d |
⊢ ( 𝐾 ∈ Poset → ( ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
42 |
41
|
imdistani |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) → ( 𝐾 ∈ Poset ∧ ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
43 |
1 18 33
|
isclat |
⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) ) |
44 |
1 2 26
|
islat |
⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
45 |
42 43 44
|
3imtr4i |
⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) |