Metamath Proof Explorer


Theorem clatlem

Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses clatlem.b 𝐵 = ( Base ‘ 𝐾 )
clatlem.u 𝑈 = ( lub ‘ 𝐾 )
clatlem.g 𝐺 = ( glb ‘ 𝐾 )
Assertion clatlem ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ( 𝑈𝑆 ) ∈ 𝐵 ∧ ( 𝐺𝑆 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 clatlem.b 𝐵 = ( Base ‘ 𝐾 )
2 clatlem.u 𝑈 = ( lub ‘ 𝐾 )
3 clatlem.g 𝐺 = ( glb ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝐾 ∈ CLat )
5 1 fvexi 𝐵 ∈ V
6 5 elpw2 ( 𝑆 ∈ 𝒫 𝐵𝑆𝐵 )
7 6 biimpri ( 𝑆𝐵𝑆 ∈ 𝒫 𝐵 )
8 7 adantl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝑆 ∈ 𝒫 𝐵 )
9 1 2 3 isclat ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) )
10 9 biimpi ( 𝐾 ∈ CLat → ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) )
11 10 adantr ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) )
12 11 simprld ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → dom 𝑈 = 𝒫 𝐵 )
13 8 12 eleqtrrd ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝑆 ∈ dom 𝑈 )
14 1 2 4 13 lubcl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( 𝑈𝑆 ) ∈ 𝐵 )
15 11 simprrd ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → dom 𝐺 = 𝒫 𝐵 )
16 8 15 eleqtrrd ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝑆 ∈ dom 𝐺 )
17 1 3 4 16 glbcl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( 𝐺𝑆 ) ∈ 𝐵 )
18 14 17 jca ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ( 𝑈𝑆 ) ∈ 𝐵 ∧ ( 𝐺𝑆 ) ∈ 𝐵 ) )