Step |
Hyp |
Ref |
Expression |
1 |
|
clatlem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
clatlem.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
3 |
|
clatlem.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
4 |
|
simpl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝐾 ∈ CLat ) |
5 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
6 |
5
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
7 |
6
|
biimpri |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
9 |
1 2 3
|
isclat |
⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
10 |
9
|
biimpi |
⊢ ( 𝐾 ∈ CLat → ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
12 |
11
|
simprld |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝑈 = 𝒫 𝐵 ) |
13 |
8 12
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝑈 ) |
14 |
1 2 4 13
|
lubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
15 |
11
|
simprrd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝐺 = 𝒫 𝐵 ) |
16 |
8 15
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝐺 ) |
17 |
1 3 4 16
|
glbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
18 |
14 17
|
jca |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) ) |