| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clatlem.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							clatlem.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							clatlem.g | 
							⊢ 𝐺  =  ( glb ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  𝐾  ∈  CLat )  | 
						
						
							| 5 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							elpw2 | 
							⊢ ( 𝑆  ∈  𝒫  𝐵  ↔  𝑆  ⊆  𝐵 )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpri | 
							⊢ ( 𝑆  ⊆  𝐵  →  𝑆  ∈  𝒫  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ∈  𝒫  𝐵 )  | 
						
						
							| 9 | 
							
								1 2 3
							 | 
							isclat | 
							⊢ ( 𝐾  ∈  CLat  ↔  ( 𝐾  ∈  Poset  ∧  ( dom  𝑈  =  𝒫  𝐵  ∧  dom  𝐺  =  𝒫  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimpi | 
							⊢ ( 𝐾  ∈  CLat  →  ( 𝐾  ∈  Poset  ∧  ( dom  𝑈  =  𝒫  𝐵  ∧  dom  𝐺  =  𝒫  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  ( 𝐾  ∈  Poset  ∧  ( dom  𝑈  =  𝒫  𝐵  ∧  dom  𝐺  =  𝒫  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simprld | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  dom  𝑈  =  𝒫  𝐵 )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							eleqtrrd | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ∈  dom  𝑈 )  | 
						
						
							| 14 | 
							
								1 2 4 13
							 | 
							lubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑈 ‘ 𝑆 )  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								11
							 | 
							simprrd | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  dom  𝐺  =  𝒫  𝐵 )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							eleqtrrd | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ∈  dom  𝐺 )  | 
						
						
							| 17 | 
							
								1 3 4 16
							 | 
							glbcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  ( 𝐺 ‘ 𝑆 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							jca | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑈 ‘ 𝑆 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑆 )  ∈  𝐵 ) )  |