Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatlubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| clatlubcl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | clatlubcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clatlubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | clatlubcl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 4 | 1 2 3 | clatlem | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( ( glb ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐵 ) ) | 
| 5 | 4 | simpld | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |