Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clatlubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
clatlubcl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
Assertion | clatlubcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | clatlubcl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
3 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
4 | 1 2 3 | clatlem | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( ( glb ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐵 ) ) |
5 | 4 | simpld | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |