Step |
Hyp |
Ref |
Expression |
1 |
|
clatlubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
clatlubcl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
3 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
4 |
3
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
5 |
4
|
biimpri |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
7 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
8 |
1 2 7
|
isclat |
⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom ( glb ‘ 𝐾 ) = 𝒫 𝐵 ) ) ) |
9 |
|
simprl |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom ( glb ‘ 𝐾 ) = 𝒫 𝐵 ) ) → dom 𝑈 = 𝒫 𝐵 ) |
10 |
8 9
|
sylbi |
⊢ ( 𝐾 ∈ CLat → dom 𝑈 = 𝒫 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → dom 𝑈 = 𝒫 𝐵 ) |
12 |
6 11
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ dom 𝑈 ) |