Metamath Proof Explorer


Theorem clatpos

Description: A complete lattice is a poset. (Contributed by NM, 8-Sep-2018)

Ref Expression
Assertion clatpos ( 𝐾 ∈ CLat → 𝐾 ∈ Poset )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
3 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
4 1 2 3 isclat ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) )
5 4 simplbi ( 𝐾 ∈ CLat → 𝐾 ∈ Poset )