Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cldcls | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 4 | 2 | clsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 5 | 1 3 4 | syl2anc | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 6 | intmin | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } = 𝑆 ) | |
| 7 | 5 6 | eqtrd | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |