Metamath Proof Explorer


Theorem cldcls

Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007)

Ref Expression
Assertion cldcls ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 cldrcl ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
2 eqid 𝐽 = 𝐽
3 2 cldss ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 𝐽 )
4 2 clsval ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )
5 1 3 4 syl2anc ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )
6 intmin ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } = 𝑆 )
7 5 6 eqtrd ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 )