Step |
Hyp |
Ref |
Expression |
1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
iscld3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
3 |
1
|
clslp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
4 |
3
|
eqeq1d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) ) |
5 |
|
ssequn2 |
⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) |
6 |
4 5
|
bitr4di |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
7 |
2 6
|
bitrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |