| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpfval.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | iscld3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  =  𝑆 ) ) | 
						
							| 3 | 1 | clslp | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  =  ( 𝑆  ∪  ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  =  𝑆  ↔  ( 𝑆  ∪  ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) )  =  𝑆 ) ) | 
						
							| 5 |  | ssequn2 | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆  ↔  ( 𝑆  ∪  ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) )  =  𝑆 ) | 
						
							| 6 | 4 5 | bitr4di | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  =  𝑆  ↔  ( ( limPt ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) ) | 
						
							| 7 | 2 6 | bitrd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( limPt ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑆 ) ) |