Metamath Proof Explorer


Theorem cldlp

Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis lpfval.1 𝑋 = 𝐽
Assertion cldlp ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 lpfval.1 𝑋 = 𝐽
2 1 iscld3 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) )
3 1 clslp ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) )
4 3 eqeq1d ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) )
5 ssequn2 ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 )
6 4 5 bitr4di ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) )
7 2 6 bitrd ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) )