Metamath Proof Explorer


Theorem cldmre

Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion cldmre ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 1 cldss2 ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋
3 2 a1i ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 )
4 1 topcld ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) )
5 intcld ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) )
6 5 ancoms ( ( 𝑥 ⊆ ( Clsd ‘ 𝐽 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) )
7 6 3adant1 ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ( Clsd ‘ 𝐽 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) )
8 3 4 7 ismred ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝑋 ) )