Metamath Proof Explorer


Theorem cldmreon

Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Assertion cldmreon ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 topontop ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top )
2 eqid 𝐽 = 𝐽
3 2 cldmre ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝐽 ) )
4 1 3 syl ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝐽 ) )
5 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = 𝐽 )
6 5 fveq2d ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ( Moore ‘ 𝐵 ) = ( Moore ‘ 𝐽 ) )
7 4 6 eleqtrrd ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝐵 ) )