Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006) (Revised by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | cldopn | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | cldrcl | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
3 | 1 | iscld | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
4 | 3 | simplbda | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) |
5 | 2 4 | mpancom | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) |